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AbstmeL For a general spectral operator, we establish + of algebraic S ~ N C ~ U ~ E S  of 
the spaces of the mrrespnding imspeclral Lax operatoa, which es.?entially form the 
theoretical basis of the Lax operator method. Furthermore we introduce the mncepts 
of r-algebras and master algebras to devrite lime-po5momialdependent spmetries of 
nonlinear integrable equations. Finally we apply our theory of Lax operators to the KP 
hierarchy of integrable equations as an illustrative example, and thus obtain the master 
symmetry algebra of the KP hierarchy. 

1. Intmduction 

It is well known that many nonlinear integrable equations in 1+ 1 dimensions possess 
some cnmmon aspects: Lax representations, infinitely many symmetries and conserved 
quantities, existence of bi-Hamiltonian formulations, etc (see Newell 1985, Olver 1986, 
and Magri 1980). A recursion operator with the hereditary property plays a central 
role in investigating the above algebraic properties. Recently the above theory has 
been extended to integrable equations in 2 + 1 dimensions (see Santini and Fokas 
1988, Fokas and Santini 1988a). In particular, Santini and Fobs have found the 
multidimensional analogue of the recursion operator called the extended recursion 
operator for several integrable equations in 2+ 1 dimensions (see Santini 1989, Fokas 
and Santini 1988b). However, for a given equation in 2 + 1 dimensions, it not very 
easy to construct an extended recursion operator which can admit the bi-Hamiltonian 
factorization. IIb avoid this difficulty, Cheng PI a1 (1988) and Cheng (1988, 1991) have 
proposed a direct method of Lax operators by discussing the algebraic properties for 
special integrable equations, based upon the ideal of the master-symmetry method of 
Fuchssteiner (1983), Fokas and Fuchssteiner (1981), Oevel and Fuchssteiner (1982). 
Chen el a1 (1985, 1982, 1983), Chen and Lin (1987). We shall generalize the Lax 
operator method to integrable equations associated with a rather general spectral 
operator, by exposing a property of Gateaux derivative operators of matrix differential 
operators. ?he theory of this paper is applicable to integrable equations both in 1+ 1 
and in 2 + 1 dimensions. 

This paper is organized as follows. In section 2, for any matrix differential spectral 
operator, we give types of product operators of isospectral L a x  operators which 
correspond to the commutator of vector fields and display the Lie algebraic structure 
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of a quotient algebra of the Lax operator algebra. Section 3 discusses the relations 
between symmetries of integrable equations and subalgebras of the Lax operator 
algebra. The introduced  algebras and master algebras play an analogous role to 
recursion operators. In section 4, as an application of our theory, we present a T -  

algebra and a master algebra for the KP hierarchy of integrable equations and thus 
derive the explicit formulas for IC-symmetries and every-degree master symmetries 
of the KP hierarchy of integrable equations. 

In the following, we. give the fundamental notation (see also Ma 1992). 

1.1. The independent and dependent variables 
Let the independent variables I E RP, 1 E R ,  and the dependent variables ui = 
u ' ( z , t ) ,  1 < i < q, belong to Schwartz space over RP for any fixed t E R. We 
denote by S9(RP, R) all vectors U = (ul,. . . , ~ 9 ) ~  of dependent variables of that 
kind. 

1.2. The spaces Br,V' and V; 

For a = (a l  ,... , a p ) ,  ai E 2 and ai 2 0, 1 < i < p ,  we write D" = 
(d/dzl)ml ...( d/dzP)"p, (a(= C;='=,ai. Let B denote all complex (or real) func- 
tions P[u] = P ( z , t , u )  which are Cm-differentiable with respect to z , t  and 
C"-Gateaux differentiable with respect to U = U(%) (as functions of I), and set 
B' = {(PI,. . . , P,)T I pi E B ,  1 < i < T-). Let Vp denote all linear operators 
Q, = Q,(z,t,u) : 0' -+ 8' which are Cmdifferentiable with respect to z,t and 
Cm-Gateaux differentiable with respect to U = U(..), and by V;(E Vr) all matrix 
differential operators Q, : B' - Bp with the special form 

@ = ( @ i ] L X 7  ,aij = P;J[ujD" PLj[u] E B .  (1.1) 
i4<-(id 

Note that here the space B includes non-local functions, for example, the Hilbert 
transform of U, HU = i P J _ " ,  u(y,t)/(y - z ) d y .  Therefore it is an extension of 
the space A, which consists of local functions only (see Ma 1991b). 

1.3. The G a t e a u  derivative 
For a vector function Ii E B', define its Gateaux derivative in the direction S E Bq 
as 

(1.2) 
a .  
a' I<7'[s] = - A ( U  + 'S)I,=, 

[ K , S ]  = K'[S] - S ' [K]  

and for two vector fields I(,  S E B9, define the product vector field as 

(1.3) 

which has been shown to be a commutator operation of Bg by Bowman (1987). For 
an operator @ E V',  define its Gateaux derivative operator Q,' : B9 + Vr as 

ICE B9 S E  E ' .  (1.4) 
a ~ [ r i l s  = -qU + E K ) S  I<=, a' 

Throughout this paper, we always choose the spectral operator L = L(I, U) : 
Bp + 0' to be a matrix differential operator with the form (1.1) and assume that its 
Gateaux derivative operator L' : B9 -+ V; is an injective linear homomorphism. 
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2. Lax operators and their algebraic structures 

We suppose that the equations U, = X, U, = Y ( X , Y  E Bq) possess the Lax 
representations L,  = [ A , L ] ,  L,  = [ B , L ]  ( A , B  E Vr), respectively. In the Lax 
theory, there is the basic question: does the equation U, = [ X , Y ]  possess the Lax 
representation, too? If the answer is ’yes’, what form does the operator C E V’ of 
its Lax representation L ,  = [C, L] possess? 

In this section, for the spectral operator L : B‘ -+ B‘, we establish a kind of 
algebraic structure of the space of the corresponding isospectral Lax operators and 
further derive the Lie algebraic structure of a quotient algebra of the Lax operator 
algebra. Therefore we give a complete answer to the above basic question. 

Definilion 2.1. Let A E V‘. If there exists a vector field X E Bq such that [A, L ]  = 
L ’ [ X ] ,  then A is called an isospectral Lax operator, or a Lax operator for short, and 
X called an eigenvector field of the Lax operator A. Moreover, we denote by M ,  
all Lax operators and by E(N,) ,  all eigenvector fields of Lax operators in a subset 
N, of M,. 

Note that when [ A , L ]  = L ’ [ X ]  , A E V‘ ,X  E Bq, the equation U, = X 
possesses the Lax representation L ,  = [ A ,  L]  by L,  = L’[u,] .  Moreover a Lax 
operator only has an eigenvector field as L’ is injective. Therefore we can further 
give the following definition. 

Definition 2.2. Let two Lax operators A ,  B E M ,  have eigenvector fields X, Y E 
E(M,),  respectively. Then we define the product operator of two Lax operators 
A, B as follows: 

[ A ,  Bl= A’[Y]  - B ’ [ X ]  + [ A ,  B ] .  (2.1) 

We shall show that this product operator [ A ,  B ]  just corresponds to the commu- 
tator [X, Y ] ,  ?b this end, we first need the following basic result. 

Theorem 2.1. Let P = P(z,f,u) E B ,  IC = IC(x , t , u ) ,S  = S ( z , t , ~ )  EBq;  then 
we have the relation 

(P’[IC])’[S] - ( P ‘ [ S ] ) ‘ [ K ]  = P‘[T]  T = [IC,S].  (2.2) 

Pro05 By the definition of the Gateaux derivative, we have 

At the Same time, we similarly have 
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Thus we obtain 

a (P’[iW[sl- (P’[sl)’[icl = - [ P ( U  t N [ s I )  - P ( U  t PS‘[KI)I 
ap 

= P‘[IC’[S]] - P‘[S’[IC]] = P’[Tj 

which completes the proof. 0 

From the above theorem, we can easily deduce the following corollary. 

Corollary 21. Let @ E V ; ,  IC, S E Bq. Then we have 

(@’[KI)‘[Sl - (@’[S])’[K] = @’[Tj T = [ K ,  SI 

Theorem 2.2. Suppose that two Lax operators A, B E M, have eigenvector fields 
X,Y E E(M,), respectively. Then we have the equality 

[ [ A ,  Bn, L] = ~ 7 . ~ 1  z = [x ,  YI  (2.3) 

which show that the product operator [A, 
its eigenvector field is the mmmutator [X, Y]. 

Proof. Since ( V ‘ , [ . ,  .]) is an operator Lie algebra, we have 

E V’ is a Lax operator, too, and that 

[[A, El, L] = [ A , [ B ,  Ll1- [E,[.% 4 1  = [ A ,  L‘[YlI - [B, L’[Xll. 

Therefore, 

[ U 4  BII, LI = [A’[Yl, L] t [A, L’[YIl- [B‘[Xl, L] - [E, L’IXIl 

= [ A ,  Ll’[Yl- [ B ,  Ll’[Xl 
= (L’[X])’[Y] - (L’[Y])’[X] = L’[Z] (by corollary 2.1). 

The rest is obvious and thus the result is proved. 0 

Evidently we see by (2.1) that the multiplication operation [.,.I is bi-linear and 
anti-commutative. Therefore noticing that the multiplication operation [., .] given by 
(1.3) satisfies Jacobi identity (see Bowman 1987), we obtain at once the following 
three results by the above theorem. 

Corollary 22. (M,,!., .I) is an anti-commutative algebra and (E(M,) ,  [ . , . I )  is a 
Lie algebra. 

CoroNary 2.3. Let A, B ,  C E M,. Then we have 

[UUA, BII, C1 t qcle(A, B , C ) ,  LI = 0 .  (2.4) 

Corollary 2.4. If N, is a subalgebra of M,, then E(”) is a Lie subalgebra of 
E(M,) and possesses the Same algebraic structure as N,. Thus the space of the 
Bows of the equations ut = X, X E E()/,), possesses the same algebraic s t ” m  
as N,, too. 
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Set K ( L )  = {A E V'I [A,L] = 0). Obviously K ( L )  is a Lie subalgebra of 
(V',[.,.]) and is also a subalgebra of ( M , , [ . ,  .I). Thus K ( L )  generates an equiva- 
lence relation - of U': 

A -  B e [A,L] = [ B , L ]  A, B E V " .  
We denote by CL(A)  the equivalence class to which A E V' belongs. 

Proposition 2.1. ( K ( L ) , [ . , . l )  is an ideal subalgebra of ( M , , [ . , . ] ) .  

Proof. Let A E K ( L ) ,  B E M , .  If follows from theorem 22 that 
[A, B ] ,  [B, An E K (  L ) ,  which implies that the result of the theorem is true. 0 

Based on the above proposition, we can generate a quotient algebra C L ( M , )  = 
M,/IC( L )  = {CL(A)I A E M , ) ,  whose multiplication operation is as follows: 

UCL(A), CL(B)JI = CL([A, B ] )  A,  B E M ,  . (2.5) 
'Ib explain that the equality (2.5) makes sense, we may directly prove the following 

result. If A, - A,, B, - B, ,Ai ,  Bi E M , ,  i = 1,2, then [A1, Bin - [A,, B,I. 
In the following we would l i e  to show this. Suppose that [Ai ,  L] = L'[X] , [ Bi , L] = 
L'[Y], i = 1,2. Then we have 

[(Ai - A,)'[Yl - (Bi - B,)'[Xl, LI = - [Ai - -423 L'IYII + [Bi - B2, L'IXII 
= - [Ai 3 [Bit Ll1+ [A2,[B23 Ll1+ [Bi,[Ai, Ll1- IB27 [A29 LII 
= - [ [Ai ,B i l ,L l+  [[A,, B21,Ll . 

It follows that 

which is just the desired result. 

Theorem 23. Thequotient algebra ( C L ( M , ) , [ . , . n )  = (M,/h'(L),(I.,.])isaLie 
algebra and isomorphic to the Lie algebra ( E ( M , ) ,  [., .I). Moreover the following 
mapping 

Bin - [A,, ~ , n  

p : C L ( M , )  -+ E ( M , )  CL(A) c X ( [A,  L] = L'[X] ) 
is a Lie algebraic isomorphism between Lie algebras ( C L ( M , ) , [ . , . ] )  and 
( E ( M m ) ,  [.,.I). 
Proof. Obviously, p is a linear isomorphism. If Lax operators A, E E M ,  have the 
eigenvector fields X ,  Y E E ( M , ) ,  respectively, then we have 

dUCL(A) ,CL(B)1)  = dCL(lIA,B]I)) = [ X , Y l  = b(CL(A)) ,p(CL(B))I  . 
Thus by corollary 2.2, we obtain the result that ( C L ( M , ) , [ . , . n )  is a Lie algebra 
and further we see that p is a Lie algebraic isomorphism. The proof is completed. 0 

Corollary 25. If an eigenvector field X E E ( M , )  corresponds to a Lax operator 
A E M , ,  then the equivalence class CL(A)  is just all Lax operators to which the 
vector field X corresponds. 

By now, we have systematically answered to the question posed at the beginning 
of this section. Corollary 2.5 also gives an answer to the second basic question 
in Marvulle and Wreszinski (1989): if an equation U, = X ( X  E Bq)  has a Lax 
representation L, = [A,  L] ( A  E Vr), how many different Lax operators A are 
associated with the same equation U, = x? 
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3. Subalgebras and symmetries 

From now on, for a subset V of some linear space (for instance, the space of Lax 
operators M ,  or the space of vector fields B9), we always use span(V) to denote 
the subspace spanned hy V. 

Theorem 3.1. Let N, be a subalgebra of M,. If Lax operators of N, are not 
equivalent to each other, then (N,, I., .I) forms a Lie algebra and is isomorphic to 
the Lie algebra (CL(N,) ,  [.,.n) (or (E(“ ) ,  [., . I ) ) .  

Proof. By the hypothesis and corollary 23, we see that (N, , [ . , .n)  forms a Lie 
algebra. We make the mapping 

p : N , + C L ( N , )  A o C L ( A ) .  

Evidently, p is linear and surjective. Moreover by the hypothesis, p is injective. Hence 
p is a linear isomorphism. In addition, 

p([A,BI) = CL(UA,B]) = [CL(A) ,CL(B) l  = Up(A),dB)D. 

Therefore p is a Lie algebraic isomorphism. Now the proof is complete. 0 

This theorem gives an approach for proving that some set of Lax operators N, (E 
M,) is a Lie algebra with the multiplication operation [., .I. If we can veri@ that 
(1) N, is closed under the multiplication operation [., .I defined by (2.1), (2) Lax 
operators of N, are not equivalent to each other, that is to say that the operator 
equation [A,L]  = 0 with respect to A has the unique zero solution A = 0 in 
N,, or that Lax operators A E N, correspond one-to-one to eigenvector fields 
X E E(”),  then N ,  constitutes a Lie subalgebra of M ,  with the multiplication 
operation [., .]. In general, for a hierarchy of isospectral integrable equations ut = 
X, = @“fo (@ E V 9 ,  jo E B9), m > 0, we can construct a hierarchy of the 
corresponding Lax operators 

according to the method of Ma (1991a). The space Span{A,lm 2 0 )  spanned 
by the hierarchy of Lax operators of that kind usually satisfies the above-mentioned 
conditions (l), (2), and thus it often forms a Iie subalgebra of M,. The cases 
of Kdv, M s ,  dispersive long-wave and Boussinesq hierarchies have been discussed 
in Cheng and Li (1990), Li and Cheng (1991), and B a n g  and Cheng (1990). Ma 
(1991~) has considered the cases of general hierarchies of integrable equations. 

In the following, we discuss three kinds of special subalgebras of the Lax Operator 
algebra (M,, E., .I) and the related problem of symmetries. 

3.1. Abelian subalgebras 

Abelian subalgebras just correspond to the algebras of K-symmetries of integrable 
equations. Obviously we have the following general result. 
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Theorem 3.2. If R, E M ,  is an Abelian subalgebra and if aE(R,)/at  = 
{aZ/at lZ E E(R,)} = 0, then every equation ut = K ( K  E E(R,)) possesses 
K-symmetries SK = E(R,) and S, is an Abelian subalgebra of E(M,). 

Suppose that a hierarchy of Lax operators A, E M,, m 2 0, commute with 
each other and that A,, m > 0, have the eigenvector fields X ,  E E ( M , ) ,  m 2 0. 
By corollary 2.4, we know that a hierarchy of equations ut = X,, m 2 0, possess 
mmmutative Rows. Further, if ax,/& = 0, -m 2 0, then every equation ut = 
Xi,  ( i  > 0) possesses a hierarchy of commutative K-symmetries {X, } ;= ,  by the 
above theorem. 

In general, .nonlinear integrable equations always possess a hierarchy of K -  
symmetries. But there also exist some integrable equations, for example the Boussi- 
nesq equation, which possess two hierarchies of K-symmetries. We do not know, 
however, whether the other integrable equations (say, mv and AKNS equations, etc) 
possess WO hierarchies of K-symmetries too, or even more. 

3.2. r-subalgebras 
In this subsection, we consider types of subalgebras which generates 7-symmetries 
(see Ma 1990) of integrable equations. 

Definition 3.1. Let M be an algebra, * its multiplication operation and R,,R, two 
subalgebras of M. If R, is Abelian and R, * R, , R, * R, E R,, then R = R, + R, 
is called a rsubalgebra of M. If R is also a Lie algebra, then R called a Lie 
s-subalgebra of M. 

Hereditary algebras introduced by Fuchssteiner (1990) are a special case of T -  

aigebras. 

Theorem 3.3. Let R,,R, E M, and a E ( R ; ) / a t  = { a Z / a t ( Z  E E ( R i ) )  = 
0, i = 0 , l .  If R = R, + RI is a s-subalgebra of M,, then (1) every equation 
ut = IC (IC E E(R, ) )  possesses a set of I<-symmetries S, = E(R,) and a set of 
s-symmetries S, = {sy = t[lC,Y] + Y J  Y E E ( & ) } ;  (2) S = SK + S, is a Lie 
1 ouua.rgru,o "L a,." 1,ao L l l r  W I I I I I I " L L . L " I  l r l a L l " l l l  
- "..k?.I"-k-* ̂ C c,, " I  , ""A k"" 4." Y........tnt,.- -*I".:,."" 

[X,,X',l= 0 X , ? X ,  E E(R0)  ( 3 4  
[ X ,  T Y l  = 1x2 YI X , E  E(&)  Y,E E(Ri) (3.2) 

['Y, ,TY21 = r[Y,,Y>l Y1,K E E(R1). (3.3) 

emf, (ij >u'UiiC@ .Gat E( R,) ;j Aaeiiaii and that aqfi,)/ai = 0, .we find fiat 
S, is a set of IC-symmetries of ut = IC. In addition, we easily see that any wctor 
field Y E E( R,) is a IC-generator of first order with characteristic 0 (for definition, 
see Ma 1991b) and thus we deduce that S, is a set of s-symmetries of ut = IC. 

(2) We only need to prove (3.2) and (3.3). For any X E E( R,), Y, q , Y2 E 
E(R,) ,  we have 

[ X , r y ] =  [ X , t [ I C , Y ] + Y ] = t [ X , [ I i , Y ] ] + [ X , Y ]  = [ X , Y ]  

[Tu,, Ty2] = [ t [  fc, Yi] +q 9 t [  y2] + & I  = t [ [ I C ,  51 7 &I+t[q  I [ I C * ,  yzll+ [ y ,  &] 
= ~ ~ ~ ~ ~ ~ ~ , ~ ~ l l + ~ ~ l ~ y Z l = ~ [ u , , Y , ] '  

Therefore (3.2) and (3.3) hold. The proof is completed. 0 
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From this theorem, we know that E( R , )  is a set of mmmon master symmetries 
of first order of the equations ut = K, K E E( R,). 

Generally for integrable equations, R, = Span{A, E M,lm 0}, RI = 
Span{B, E M,ln 2 0). Let A,,B,(m,n 2 0) have the eigenvector fields 
X,,Y, E E(M,)(m,n 2 0), respectively. This moment, E(R,) = Span{X, E 
E(M,)lm 2 0), E(R,)  = Span{Y, E E(M,)ln 2 0). Thus we deduce from 
theorem 3.3 that every equation ut = X i  ( i  2 0)  passesses a hierarchy of K -  
symmetries { X , ) &  and a hierarchy of r-symmetries {T?) = t [ X i ,  Y,] + Y,}:=, 
(at the same time, {Y,):=, is a hierarchy of master symmetries of fust order), and 
S = S, + S, = E( R,)  + { t [ X i  , Y ]  + Y 1 Y E E( RI)} mnstitutes a Lie r-subalgebra 
of E ( M , ) :  

[ X , , X , l =  0 m,n  > 0 (3.4) 

[ X ,  ,r?I = [ X ,  9 % I  m , n  > 0 (3.5) 

[ rk) ,  r p ]  = t [ X i ,  [Y, , Y,]] + [Y, , Y,] (3.6) m, 11 0 . 
These types of r-algebras are often hereditary algebras (see Fuchchssteiner 1990). 
Moreover these types of r-algebras of many known integrable equations have been 
presented in Chen et a1 (1985, 1982, 1983, 1987); Cheng, Li and Bullough (1988); 
Cheng (1988, 1989, 1990, 1991); Ma (1990) and Li (1990) etc. 

3.3. Master subalgebras 

Definition 3.2. Let M be an algebra, * its multiplication operation and R, E M, 
i 2 0. If Ri*Rj R i+ j - , ,  R - ,  = 0, i , j  2 0, then R = Cp"=, Ri = {cy=, Ail n. 2 
0, Ai E R , ,  0 < i < n) is called a master subalgebra of M. If R is also a Lie 
algebra, then R called a Lie master subalgebra of M. 

Here we have not required that Ri ,  i 2 0, are subalgebras of M and that 
R = E:, Ri is a direct sum. Therefore Lie master algebras are different from Z -  
graded Lie algebras (see Kac 1985) although there exist some similarities between the 
two. Obviously, master algebras are the extension of r-algebras. When R = E:, R; 
is a master subalgebra, R, + R, is certain to be a r-subalgebra. 

Theorem 3.4. Let R, EM,, i 2 0, and a E ( R , ) / a t  = {aZ/at lZ E E ( R i ) )  = 0, 
i 2 0. If R = E:, Ri is a master subalgebra of M,, then (1) every equation 
ut = IC ( I <  E E( R,)) possesses a set of K-symmetries S, = E( R,) and a set of 
time-polynomial-dependent symmetries 
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proof. (1) Obviously, S, is a set of If-symmetries of 'ut = K. In addition, we 
easily see that any vector field Y E E ( R k )  ( k  2 1 )  is a K-generator of order k 
with characteristic 0. Therefore c$) is a time-polynomial-dependent symmetry of 
ut = K. 

(2) Noticing that 

[E(Ro),[E(Ro), ..., [E(Ro),E(Rk)I ... I ] = O  k 2 O  . 
k t l  

we easily obtain (3.7), (3.8). In the following, we prove (3.9). For 
E ( & ) ,  k , l >  1, we have 

E E( R,), Y2 E 

which implies that (3.9) holds. 
By (3.7)-(3.9), we see that S = S, + SLk' is a Lie master subalgebra of 

U 

From theorem 3.4, we can find that the equations ut = K, K E E( Ro), have a 
set of common master symmetries of order k :  E( R,) ( k  > 1 ) .  

Generally for integrable equations, R, = Span{A, E M,lm 2 0}, Ri = 
Span{B;, E M,ln 2 0}, i 2 1.  Let A, ,Bin( i  2 1 ,  m,n 2 0) have the 
eigenvector fields Xm,y.,, E E(M,) ( i  > 1 ,  m,n 2 0), respectively. Then 
E(Ro) = Span{X, E E(M,)lm 2 01, E ( R ; )  = Span{y,  E E(M,)ln 2 
0 } ,  i 2 1. Thus every equation ut = X i  ( i  2 0) possesses a hierarchy of K -  
symmetries {X,,,)z?> and infinitely many hierarchies of time-polynomialdependent 
symmetries {o::: = $kiYk,,}:=o, k 2 1 (at the same time, {Yk,):=o ( k  2 
1) is a hierarchy of master symmetries of order k ) ,  and 

E ( M m ) .  Now the proof is completed. 

constitutes a Lie master subalgebra of E(M,): 

Finally, we point out that r-algebras and master algebras of the Lax operator alge- 
bra play an analogous role to recursion operators in discussing the algebraic properties 
of integrable equations. Furthermore, the integrable equations in 1 + 1 dimensions 
usually have r-algebras and those in 2 + 1 dimensions often have master algebras, 
which is a remarkable difference between these kinds of integrable equations. 
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4. Applications to integrable equations 

In this section we want to present some applications of r-subalgebras and master 
subalgebras to integrable equations. We shall mainly construct a r-subalgebra and 
a master algebra and thus derive a hierarchy of A'-symmetries and infinitely many 
hierarchies of time-polynomial-dependent symmetries for the well known KP hierarchy 
of integrable equations. Certainly, the theory of s-subalgebras and master subalEebras 
may also applied to other hierarchies of integrable equations, for example, MG and 
Caudrey-Dodd-Gibbon-KateraSawada hierarchies, etc. 

We choose the following (2 + 1)-dimensional spectral operator L: 

L = ea, t a: + U 01 E c a # o U = u(z,Y,~) E s ( R ~ , R ) .  (4.1) 

T$,de":!y, L\e C-a:ea.;n Ce*"2t*"*e opia:oi ieads 2s Lyx; = x, x E up, aii#j t&Gs & 
injective. Let 

m 

B = b,,a,ka; b,, E B O Q k , l < m  m>O 
k, I=0  

be a Lax operator. Noticing that 8, = & ( L  - a: - U ) ,  we can rewrite B as 
B = E:=, A,L',  where A,, 0 < i Q n, are polynomials only in a,. In this way, we 
have 

n 

[ E ,  LI = LIL'. 
,=O 

Because [E, L] is a multiplication operator, we can further obtain [ E ,  L]  = [A,, L]  
by comparing the degrees of a Therefore we may only consider the following 
differential polynomial operator m a.: ?'  

m 

~ = C a , a f  U ~ E B  o g k ~ m  m>O ( 4 4  
k=O 

as a candidate for Lax operators. We can find by direct computation that the differ- 
ential operator A with the form (4.2) is a Lax operator, Le. there exists a vector field 
X E B such that [A, L ]  = L'[X]  = X if and only if a,, 0 < k < m, satisfies the 
following equations 

a,, = 0 

aa,, + 2am-1,, = 0 
aa , - l , y  + 2a,-2*, - amu, = 0 (4.3) 

and 
m 

(4.4) 
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Set the space W as 

in which 8;' = 
over the space W as follows: 

8;'h = a;'(f+ g) = / z f d z '  + $(/ -l )gdd 
Furthermore suppose that C [ y ]  denotes all polynomials in y ,  and C , [ y ]  (n  2 0), all 
polynomials in y with degrees less than n + 1. We write 

= ' k l  + a k 2  a k l  = aklu=O a k z  = ak - ak l  0 < k < m,. (4.7) 

(J:- - J,") dz'. We introduce the inverse operator a;1 of a, 

t m 
h = f + g  E W .  

0 - m  

(4.6) 

we choose &e fn!!nwing group nf mefficlents n k j  0 6 k < m, satisfying (4:3): 

UI!!PT~ r ,  E C[y;l, e <  k < z. It k e~?sy!c?sho'u th.at G .  k = ~ 0 . -  - k l  A n . .  4 - # 2  E Y, 0s k < 
m. For every group of ck E Cly], 0 < k < m, according to (4.8) we can uniquely 
determine a Lax operator A = Cy"=, aka,", more precisely A = P(c , ,  . . . , c m ) .  Set 

Nm = { A  = P(co, .  . . , c , ) lm  3 0 ck E C [ y ]  0 < k < m} (44.9) 

(4.10) 
Ri = { A  = P(co ,  ..., c,)lm 2 0 ck E C i [ y ]  O <  k <  m }  i >  0. 

By (4.8), we easily obtain the following two basic results. 

Proposifion 4.1. Let  A = P(co  ,..., c,) = CI;=,aka," EN,. Then we have (1) 
A is t-function multi-linear with respect to c o , .  . . , cm; (2)  AI,=, = Cy='=, a k l a 2 ;  
(3) if 

Proposifion4.2. Let A = P ( c o  ,..., ~ , ) = C ~ = ~ a ~ a ~ € R ~ ( m , i ~ O ) .  I fwese t  

= 0, then A = 0. 

i ik  = ( a k  - C ~ ) I , = ~  = a k l  - ck 0 < k < m (4.11) 

then when i = 0, ii - 0, 0 < k < m; and when i 2 1, a, = 0 and a h ,  0 < k 
m - 1, are polynomials m +, y with degrees less than i with respect to y .  'i - .  
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Now we begin to verify that N, = CEO R; is a master algebra. 'Ib this end, we 
first give two lemmas. 

Lemma 4.1. When A E R,, [A,L]I,=, = XI,=, = 0; and when A E R i ( i  > l), 
[A,L]IU=o = is a polynomial in z,y with degrees less than i with respect 
to y. 

Proof. Suppose that 

m 

A = P(c,, . . . , c,) = aka: 
k=O 

By (4.4), we have 

[A, Lll,=o = XIu=, = (-ua,ao - a:ao)l,=o = -aagaoi - azaoi 

. .  . 

a 

= - aa,(ao t CO) - a%a, 

where a. = (ao-co)l,,o. Thus the desired result follows from proposition 4.2, which 
n 

Lemma 4.2. When A , B  E R,, [A,B]I ,= ,  = 0; and when A E R;, BE R, ( i , j  2 
0, i +j 2 l), the coefficients of the differential operator [A, B]l,=o are polynomials 
in x, y with degrees less than i t j with respect to y. 

Proof. Assume that 

m m n l m t n c  tho n w n n f  w,,,p,..,..o "I.. P.""L. 

m n 

A = P(co ,  . . . , c,) = aka: B = P(do, .  . . ,d , , )  = bfaL . 
k=O I = O  

Then we have 

k=O k = O  k = O  

n n-1 " 

where i ik = (ak - ck)lu=o,  0 < IC < m, sf = ( b ,  - dl)lu=o, 0 < 1 < n. Hence, we 
obtain 

From this, we obtain by proposition 4.2 the desired result. 0 
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Theorem 4.1. Let Nw,  Ri,  i 2 0, be determined, by (4.9), (4.10), respec- 
tively. Then (N,  = E& Ri,[.,.]) fonns a master algebra and thus (E(") = 
Cp"=o E ( R i ) ,  [.,.I) forms a Lie master algebra. 

Proof. We only need to prove that 

URit RjR C Ri+j-i,R-k = 0 i, j 2 0. (4.12) 

Let A E R i ,  B E Rj ( i , j  2 0) and X E E ( R i ) ,  Y E E ( R j )  be the eigenvector 
fields of A ,  E ,  respectively. Then we have 

UA, BRIu=o = (A'[Yl- B'IXI + [A, Bl)l,=o 
= A'[YLoIIu=o - B'IXIu=oIl.=o + [ A ,  Blla=o. (4.13) 

When i + j = Ll, ie. i = j = 0, it follows from (4.13) and lemmas 4.1, 4.2 that 
[ A , B ] ( , = ,  = 0. Thus by the result (3) of proposition 4.1, we obtain [A,BR = 0, 
ie. [A, B] E R - ] .  When i + j > 1, it follows similarly from (4.13) and lemmas 4.1, 
4.2 that the coefficients of the differential operator [A,B]I,=, are polynomials in 
z, y with degrees less than i + j With respect to y. Thus by the result (2) of 
p ~ u p u ~ ~ u u i t  ~ t . 1  aiiu prupm~~run *.L, WG uu~aii i  [A, DU t ni+j-l. Suiiiiiiiiig up, we 

O 

..-..-- ..:.:.... A I ....A ------ :.:.... 1 1  ...- ----:- n A n n  r n 

see that the relation (4.12) holds, which is the desired result. 

We choose 
m 

A ,  = P(  0,. . . ,O ?(6a)"'-') = ai"')@ m 2 0 
I' m k=O 

(4.14) 

Then the corresponding eigenvector fields read as 

x,, = [A, ,  LI  = aim)a,ku - aa,abm) - aiai" m 2 o (4.16) 
m 

L = t  
" 

x,, = [ B i n ,  L]  = 

By the first result of proposition 4.1 

Ro = Span{A,,I m 2 0} 

E ( R o )  = Span{X,lm>O} E ( R i )  =Span{l ; , ln> 0 O < j  < i} 

b{'")tI~u - aaY b!") - a, i n 2 0 .  (4.17) 
k 1  

Ri = Span{Bj,ln 2 0 0 < j < i} i 2 1 
(4.18) 

i k l .  (4.19) 

According to (4.8), (4.16) we can work Out 

I A, = - X O = O  A 1 - 3  - - l a  I XI = +UZ 

A ,  = 2au + 2082 
18a 

x, = -201=uy 
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A, = -ga3a;*uY +&U,  + 1801~~a ,  + 1 2 2 a :  

x, = i8a2uu, + 3a2u,zz + 9a4a;luYy 

A, = 36a5a;2uyy - 36a4uy + 72a3u1 + 72a3u,, 

- (72a4a,-1uy - 1 4 4 ~ ~ ~ , ) a ,  + 1 4 4 ~ 3 ~ a :  + na3a; 
x, = -72a4u,a;1uy - 36asa;2uyyy - i44a4uuy - 36a4u,,, . 
The hierarchy of equations ut = X,, m 2 0, is referred to as the W hierarchy of 
equations. By theorem 4.1, this KP hierarchy has a r-algebra (L- = R, + RI, [., .I) 
(or ( E ( L w )  = E(R,)+E(R,) , [ . , . ] ) )and amasteralgebra (N, =CEoRi,[.,.I) 
(or (E(") = E( Ri) , l . , . ) ) .  When a = i / d ,  the KP hierarchy of equations 
ut = X,, m 2 0, is just the normal KP hierarchy of equations in the literature. In 
particular, the equation ut  = X ,  is just the normal KP equation ut = a;luYy - 
uzzr -&U,. 

Based on Theorem 4.1, we obtain at once the following consequence. 

Theorem 4.2. Every KP equation ut = Xi ( i  2 0), given by (4.16), possesses a 
hierarchy of common Ksymmetries {X,,,):=, and infinitely many hierarchies of 
time-polynomial-dependent symmetries 

With (4.8) and (4.17), we can similarly calculate the first four master symmetries 
of first order and the corresponding Lax operators: 

B,, = yA, Y,, = -& 
2 

2 
B,,= yAl - 3a xA, q1 = yXl  

Y12 = y x ,  - 3a2sX1 - 2221 B,, = yA, - 3a z A l  + Za 
B,, = yA, - 3a22A, + 3a3a, - 3a3a;'u 
Y,, = yx, - 3 a 2 x ~ ,  + 9a3u, + 12a4a;1uy 

and the first three master symmetries of order k (2 2) and their corresponding Lax 
operators: 

k-1 
B k O  = Y'Ao 

Bkl  = ykA, - 3 k a  2 s y  k - 1 ~  , 
Y k o  = - 5 Y  

Ykl = y k X l  + kk(k - 1)azxyk-2 

B,, = ykA2 - 3ka2xyk-'A, + $ka2yk- '  + i k ( k  - l ) a3x2yk-2  

Yk2 = ykX, - 3kaZzyk--'X, - 2kaZyk-'u 
- k(k - l)a3yk-' - i k ( k  - l ) ( k  - 2)a4x2y".3 

where we accept O(y-') = 0. 
By mnsidering the ys' degrees of coefficients of master symmetries, we can find 

that the master symmetries of order k (2  1) proposed in many references, for exam- 
ple Case and Monge (1989), Cheng (1990), Fuchssteiner (1983), Gu and Ii (1990), 
all belong to the kth space E(R,)  of master symmetries, i.e. they are all linear 
combinations of the master symmetries Ykn, 0 4 i 4 k, n 2 0, given by (4.17). 
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